Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Industrial Crops and Products ; 195, 2023.
Article in English | Scopus | ID: covidwho-2264744

ABSTRACT

The root of Isatis tinctoria L. is highly appreciated as a Traditional Chinese herbal medicine for the prevention and adjuvant treatment of respiratory diseases caused by coronaviruses viruses such as SARS and COVID-19. I. tinctoria hairy root cultures (ITHRCs) provide a better alternative to field cultivation for the production of antiviral flavonoids. For the first time, ITHRCs were exposed to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, in an attempt to promote the root growth and enhance the production of bioactive flavonoids. Results revealed that the biomass productivity (7.15 ± 0.63 g/L) in ITHRCs with an initial inoculum size of 0.2% cultured for 50 days under blue light increased by 1.86-fold relative to that under dark (control), and yields of rutin (320.49 ± 27.56 μg/g DW), quercetin (388.75 ± 9.17 μg/g DW), kaempferol (787.90 ± 83.43 μg/g DW), and isorhamnetin (269.11 ± 20.08 μg/g DW) increased by 4.15-fold, 9.31-fold, 9.09-fold, and 2.88-fold as compared with control, respectively. Interestingly, the emergence of adventitious buds was noticed in ITHRCs under all light treatments. Additionally, the enhanced densities of chloroplasts and root hairs were found in blue-light grown ITHRCs as against control, which might account for the elevated biomass productivity. Moreover, blue light induced oxidative stress in ITHRCs in terms of the overproduction of oxidation products and the enhancement of antioxidant enzyme activity. Furthermore, blue light significantly activated photoreceptor (CRY1) and key regulator of light signaling (HY5), thus leading to the up-regulated expression of MYB4 and structural genes (such as CHS and FLS) responsible for flavonoid biosynthesis. And, the transcriptional activation of CUC1 was likely related to the formation of adventitious buds in ITHRCs. Overall, the simple supplementation of blue LED light makes ITHRCs more attractive as plant factories for obtaining higher productivity of biomass and medicinally important flavonoids. © 2023 Elsevier B.V.

2.
Sustainability ; 14(21), 2022.
Article in English | Web of Science | ID: covidwho-2123814

ABSTRACT

Most of China's historic districts are located in urban centers with excessive building density and possess rich historical, cultural, scientific and aesthetic value. However, historic districts lack infrastructure and specific plans for emergency response compared to modern residential areas in cities, creating a social inequity trap for the residents in both. In addition, as valuable material cultural heritage, the usual conservation of local culture and the ecological environment conflict with anti-epidemic requirements. This study proposes a system of strategies for responding to public health emergencies that can address the above issues. Through the methods of policy refinement and the application of the concept of normal and disaster time conversion, the strategic system was constructed, including five major aspects: emergency preparedness programs at the planning level, installation of modulized variable devices, environmentally friendly health protection, disaster prevention preparation at the spatial level, and plant configuration. It is beneficial to improve the disaster prevention system for special urban communities and provide a reference for emergency planning in the future regeneration process of historic districts.

SELECTION OF CITATIONS
SEARCH DETAIL